17.05.2011, Антенный коммутатор в угломере
В угломере присутствует три аналоговые части, обрабатывающие сигналы от трех соответствующих антенн. На одном из преобразователей частоты (порядка 150 МГц), стоит ПАВ-фильтр. Задержка в ПАВ-фильтре порядка 400 нс. Естественно, фильтры не абсолютно идентичные. Разность же задержек даже на 10 нс - это расхождение фазы сигнала на полтора периода.
Вторая беда - в каждой аналоговой части стоит своя ФАП синтезатора радиочастоты для гетеродина. Её начальная фаза произвольна.
В итоге - от включения к включению первые разности фаз имеют произвольную добавку, которая, вдобавок, очень медленно дрейфует - прогреваются ПАВ и т.п.
При использовании сигналов GPS данная проблема отпадает - во вторых разностях фаз паразитное слагаемое компенсируется. При использовании сигналов ГЛОНАСС данный трюк не проходит из-за FDMA - на каждой литерной частоте паразитное слагаемое своё.
Вопрос - как бороться с этим слагаемым?
Высказанные идеи можно классифицировать на группы:
- юстировка специальная предварительная (коммутация одной антенны на три аналоговые части и т.п.) или на-лету, не прекращая выдачу навигационного решения
- юстировка с использованием тестового сигнала (тестовая синусоида или спецсигнал поверх основного сигнала) или без
- юстировка с коммутацией антенн
В качестве основой версии сейчас разрабатывается юстировка с помощью антенного коммутатора: последовательное переключение между антеннами. Есть множество возможных вариантов использования данной возможности, на какой-то конкретной пока не остановились.
Содержание |
17.05.2011 Фазовые измерения при коммутации с темпом 10 с
Используется прибор 848. На RF-разветвитель подается сигнал от одной антенны, находящийся на крыше. Разветвитель идет на коммутатор. Выходы коммутатора соединены с антенными входами угломера. В момент времени ноль 1 антенна соединена с 1 аналоговой частью и т.д. Далее начинается коммутация:
Время,c | Антенна 1 | Антенна 2 | Антенна 3 |
---|---|---|---|
0 | 1 | 2 | 3 |
10 | 3 | 1 | 2 |
20 | 2 | 3 | 1 |
30 | 1 | 2 | 3 |
Файл полученных измерений тут.
19.05.2011 Обработка файла измерений
Из файла izm.csv выбираются измерения одного канала.
ВНИМАНИЕ Далее выяснилось, что начальное положение в циклограмме было 3-1-2. В данном разделе изложен верный подход, но результаты получены на порядок хуже. Если взять правильное начальное положение - итоговая точность при данном подходе около 0.01 цикла фазы (порядка 2 мм).
Далее, строим столбцы-разности фаз 2 и 1 антенного входа и 3 и 1 антенного входа:
Строим разности фаз 2 и 1 антенны и 3 и 1 антенны (путем последовательного перемешивания по известной начальной фазе, циклограмме и проверенным моментам смены)
Далее измеряем скачок при переходе от первой точки цикла ко второй:
- для разности между 2 и 1 антенной
- для разности между 3 и 1 антенной
Далее, ищем решение незамысловатой системы уравнений для паразитной разности фаз между 2_и_1 и 3_и_1 аналоговыми частями:
- ,
которое в общем виде выглядит как
- .
Для первого такта циклограммы мы ранее получили значения d11 и d12, для них:
- .
Используем полученные значения для компенсации паразитной разности фаз в отсортированных первых разностях в соответствии с известной циклограммой.
Получаем обработанные первые разности:
Если отбросить участки переходных процессов, то коридор сжался до 0.1 цикла. Не забываем, что мы использовали нефильтрованные оценки величин и .
Следует провести моделирование системы в Matlab с учетом фильтрации, а так же произвести подбор величин и , которые бы минимизировали СКО результата (вероятно, это будет потенциальная точность при данной методике измерений и коррекции).
Получившийся xls-файл.
20.05.2011 Различие задержек в антенном коммутаторе
Вскрытие показало, что коммутатор имеет существенную разность задержек прохождения сигнала в различных точках циклограммы. "Существенную" для нашей задачи - порядка 100 пс, что на несущей есть около 0.16 длины волны.
Аналоговики измерили ГВЗ, табличка приведена ниже:
Код позиции |
Соединение Вход/Выход |
ГВЗ, пс | Подобранное значение, пс |
---|---|---|---|
01 | X1/X4 | 573 | 590,9352038769 |
10 | X1/X5 | 672 | 669,333593019592 |
11 | X1/X6 | 672 | 656,616856780512 |
11 | X2/X4 | 676 | 673,317608869649 |
01 | X2/X5 | 670 | 654,56978826263 |
10 | X2/X6 | 693 | 711,229117429279 |
10 | X3/X4 | 740 | 724,672175359185 |
11 | X3/X5 | 736 | 754,081769889783 |
01 | X3/X6 | 710 | 707,33653283001 |
Выданные нам значения улучшить результаты не позволили, зато ошибки сводятся практически в ноль при найденных численными методами значениях. Найденные оценки ГВЗ отличаются не сильно от измеренных, разница до ~20 пс.
Подобранные значения
- .
Обработанные первые разности:
Файл на этом этапе выглядит так.
20.05.2011 Обработка первых разностей фаз нескольких спутников
Ранее на приборе с режектором получены занимательные графики дрейфа первой разности фаз при использовании сигналов ГЛОНАСС:
Больше всего напрягает разброс между ними в 1 см. Задача - обработать измерения с целью уничтожения этого разброса, сведения "всех графиков в один".
При этом, желательно варьировать только параметры и , а ГВЗ в коммутаторе получить общие.
Результаты
ГВЗ - приведенные в таблице выше, соответствующие минимуму СКО по 8 спутнику.
Для остальных спутников варьируются только и .
Первые разности до обработки, ошибка порядка 0.05 цикла p2p:
После обработки ошибка peek2peek меньше 0.01 цикла:
Повторюсь, ГВЗ коммутатора использовались общие для всех литер.
Итоговый файл тут.
[ Хронологический вид ]Комментарии
http://www.webupd8.org/2010/12/install-virtualbox-40-stable-in-ubuntu.html
Войдите, чтобы комментировать.