Моделирование коррелированных гауссовых СВ — различия между версиями
Korogodin (обсуждение | вклад) |
Korogodin (обсуждение | вклад) |
||
Строка 2: | Строка 2: | ||
Рассмотрим решение данной задачи на примере модели шумов статистического эквивалента корреляционных сумм <math>I_p</math>, <math>I_e</math> и <math>I_l</math>. | Рассмотрим решение данной задачи на примере модели шумов статистического эквивалента корреляционных сумм <math>I_p</math>, <math>I_e</math> и <math>I_l</math>. | ||
+ | |||
+ | == Статистический эквивалент коррелятора == | ||
+ | |||
+ | Статистический эквивалент коррелятора синфазных корреляционных сумм можно описать рядом выражений: | ||
+ | |||
+ | <math>I_p = A_{IQ} \rho\left(\delta \tau\right) sinc\left(\frac{\delta \omega T}{2}\right) cos\left(\frac {\delta \omega T}{2} + \delta\varphi\right) + n_{Ip}</math> | ||
+ | |||
+ | <math>I_{e} = A_{IQ} \rho\left(\delta \tau - \frac{\Delta \tau}{2}\right) sinc\left(\frac{\delta \omega T}{2}\right) cos\left(\frac {\delta \omega T}{2} + \delta\varphi\right) + n_{Ie}</math> | ||
+ | |||
+ | <math>I_{l} = A_{IQ} \rho\left(\delta \tau + \frac{\Delta \tau}{2}\right) sinc\left(\frac{\delta \omega T}{2}\right) cos\left(\frac {\delta \omega T}{2} + \delta\varphi\right) + n_{Il}</math> | ||
+ | |||
+ | Задача формирования шумов квадратурных сумм - абсолютно аналогична и независима, т.к. шумы между I и Q компонентами не коррелируют. | ||
== Многомерная нормальная СВ или вектор случайных величин? == | == Многомерная нормальная СВ или вектор случайных величин? == |
Версия 15:06, 21 августа 2013
При моделировании следящих систем НАП, а так же сигналов многоантенных НАП, возникает задача создания нормальных случайных величин с заданным коэффициентом корреляции.
Рассмотрим решение данной задачи на примере модели шумов статистического эквивалента корреляционных сумм , и .
Статистический эквивалент коррелятора
Статистический эквивалент коррелятора синфазных корреляционных сумм можно описать рядом выражений:
Задача формирования шумов квадратурных сумм - абсолютно аналогична и независима, т.к. шумы между I и Q компонентами не коррелируют.
Многомерная нормальная СВ или вектор случайных величин?
При синтезе радиотехнических систем часто используются модели, оперирующие с многомерными нормальными случайными величинами. Определение из Википедии:
Случайный вектор имеет многомерное нормальное распределение, если выполняется одно из следующих эквивалентных условий:
- Произвольная линейная комбинация компонентов вектора имеет нормальное распределение или является константой.
- Существует вектор независимых стандартных нормальных случайных величин , вещественный вектор и матрица размерности , такие что:
- .
- Существует вектор и неотрицательно определённая симметричная матрица размерности , такие что характеристическая функция вектора имеет вид:
- .
Из первого условия следует, что каждая из компонент нормальной векторной СВ имеет нормальное распределение (для компоненты это вытекает при и остальных коэффициентах комбинации, равных 0). Отсюда часто возникает иллюзия, что нормальность распределений компонент влечет нормальность совместного распределения. Этот тезис не выполняется, на контрпример можно взглянуть тут.